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ABSTRACT

Many problems in acoustics contain a small dimensionless parameter
e, and it is useful, both conceptually and from the point of view of
numerical computation, to seek a solution in the form of a perturbation
series. In the simplest cases the series would proceed by integral powers
of e,

0 =0 +co + e202 +....

where, in a typical application, 0 might be an acoustic potential or
pressure arnd e a frequency parameter, or Helmholtz number. In most
cases, however, the problem of determining the functions Oi is a singular
perturbation problem, that is, one in which no single series like the one
quoted will be valid both in the near field (where boundary data are
specified and where surface loading may be of interest) and in the far
field (where the signal directivity and level are required). Separate series
must be developed describing the near and far fields, but neither can be
completely constructed independently of the other because each series
lacks sufficient boundary data for its unique determination.

> This report describes how the method of Matched Asymptotic
Expansions (MAE) can be used safely and systematically (1) to indicate
the appropriate form taken by the inner (near field) and outer (wave
field) series and (2) to determine all unknown functions and constants
appearing in both seties by "matching" the series according to a clear-
cut rulc. These points are illustrated by detailed study of several very
simple problems in low-frequency acoustic scattering problems which
serve to demonstrate that physical arguments are unreliable in these
problems and that they are no substitute for the unambiguous matching
rule. Two-dimensional scattering problems are used to introduce
logarithmic gauge functions; it is shown that the matching rule can easily
accommodate these functions and moreover, that insistence upon satis-
faction of the matching rule can in some cases be used to greatly improve
the rapidity of convergence of series involving logarithmic functions. The
report emphasizes the very widespread applicability of the MAE method
to problems in classical and modern, linear and nonlinear acoustics and
related fields.
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1. INTRODUCTION

Singular perturbation techniques have, over the past 25 years, been extensively applied

to problems in fluid dynamics, the field in which many of these techniques were first intro-

duced and in which most of their development has taken place. The literature relating to the

method of Matched Asymptotic Expansions (MAE) alone is vast, running to six books [ I -61,
several dozen review articles and more than three thousand research papers, as at mid 1976.

Despite the prolixity of these papers in many branches of steady and unsteady fluid mechanics,

it is indeed surprising that modern perturbation methods should have made so little impact on

one particular branch of unsteady fluid mechanics- Acoustics. It is even more surprising when

one recalls the work of the great 19th Century workers in acoustics -Helmholtz, Kelvin,

Stokes, Rayleigh-much of which has many ideas in common with those of the modern tech-

niques, a point to which we shall return later.

There seem to be two principal reasons why acoustics has suffered in this respect, despite

having been, a hundred years ago, the field in which MAE almost started. These are firstly,

that classical acoustics appeared by around 1910 to be a fairly well worked out subject, largely

because of the great work done in the second half of the 19th Century by Rayleigh and others.

There were, of course, difficult diffraction problems (such as the quarter-plane diffraction

problem) for which the mathematical techniques of 1910 were quite inadequate and for which

even today they are hardly adequate. But the physical principles of classical acoustics seemed

well enough understood, and as a result research in acoustics was taken by physicists into

directions ever more remote from the studies of the compressive wave behavior, at reasonable

frequencies, of air and water, which had been the previous concern of acoustics. Now of

course classical acoustics was not worked out by 1910, but it took another forty years until

Lighthill's work on aerodynamic noise in the early 1950's for it to be realized that the most

essential aspect of ordinary acoustics (the aspect of energy transfer from nonpropagating

modes of one kind or another into propagating acoustic energy) was in fact missing.

[ ITechnical References are listed at the end of the text.
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That aspect now pervades most work on ordinary acoustics, either explicitly or implicitly, and

has been responsible for much of the great development which has taken place in acoustics in

the last 25 years. Nonetheless, much of acoustics is still in the hands of physicists working in

very different areas, and physicists have been conspicuously slow to make any use of the

perturbation techniques which have been devised by engineers and applied mathematicians

working in fluid dynamics.

A second group of workers has also been slow to use these techniques. Those are the

workers in wave diffraction theory, a field in which mathematical rigor is often necessary and

has in any case become customary. Against the usual background in diffraction theory (of

proofs of the convergence of iterative solutions to integral equations, of the solution of

problems with the aid of function-analytic arguments in one or more complex variable planes,

etc.), techniques like MAE appear very suspect indeed. There is not much that can be proven

at intermediate stages of the calculations and the validity of the final results can usually only

be proven in rather simple cases. If one is not worried unduly by lack of mathematical rigor.

however, the gains from using modern perturbation methods can be immense. I quote three

examples, in the first of which at three successive annual Theoretical Mechanics Colloquia in

the U.K. were presented (i) a rigorous derivation of two terms for the scattering cross-section

in a high-frequency water wave problem, running to 50 pages of print, (ii) an equally rigorous

derivation of the same two terms by a more efficient method requiring 24 pages of print;

(iii) use of MAE to find, in 2 pages of print, four terms of the expansion for the cross-section

and to detect an error of sign in the second term of (i) and (ii). As the second example.

Dr. Frank Leppington and I have used MAE, an approximate method, to derive exact closed

form solutions for certain quantities in a thick plate diffraction problem 171 which previously

had only been given approximately using a so-called exact modification of the Wiener-Hopf

technique. As the third, asymptotic expansions for certain modified Mathieu functions were

needed 18] in connection with a study of the behavior of a fluid jet of elliptic cross-section -

modelling the kind of exhaust jet which propels the CONCORDE SST. I used MAE to find

these expansions, which turned out to be new, and which have since been established rigor-

ously by one of my colleagues, Dr. W. Barrett, of Leeds University, England.

I hope in these notes (a) to convince the reader that singular perturbation techniques,

and in particular MAE, form a particularly valuable tool in the context of acoustic problems

and (b) to show through simple examples in acoustics how MAE can be applied in a reasonably

systematic and safe way. Dr. Martin Lesser and I have attempted this elsewhere 191 in an

article specifically on MAE in acoustics. In retrospect, however, that article seems to involve

rather too much formalism in its attempt to make the method routine, and seems also to deal



with too wide a range of problems for the kind of course needed here. Accordingly, these

notes will be restricted to deal with a few examples in detail, after which reference to the

paper [91 may be valuable. Our main aim will be to establish firmly the basic ideas of the

MAE technique in the simplest relevant context.

2. HEURISTIC APPROACH TO MATCHING AND ITS PITFALLS

A heuristic approach to matching has been widely used in the past. Our purpose here is

to show how simple acoustic problems demonstrate that anything short of a proper mathemat-

ical rule for matching is likely to lead to erroneous restilts, even it the physical basis for

heuristic matching is clear. The correct solutions will be found later with the aid of an

Asymptotic Matching Principle.

We start by looking at the solution given by Landau and Lifschitz 1 101 for the sound

field radiated into still fluid by the forced oscillation of a body about a fixed mean position.

If the velocity of the (rigid) body is V exp(-it), we want a solution of

072 +ko)'= 0

with C r- exp(ikr) f(0W, ) as r (2.1)

and n'VO = n'V on the body

ko = /co being the acoustic wavenumber at frequency w. If the body, of typical dimension

L say, is compact- of small extent compared with the wavelength 27rko -then we argue that,

with axes fixed on an origin somewhere in the body, the motion is incompressible within a

wavelength of the body. Thus for r << kol we have

00V20 0 "

J (2.2)
and n V0= n • Y,

the radiation condition being inapplicable for this range of r. It is argued, however, that 0

cannot grow when r >> L and therefore that no eigensolution, which would necessarily grow

algebraically for r >> L, can be present. (The term eigensolution is used for any solution of

V20 = 0 with n • VO = 0 on the body. For a sphere of radius L, for example, the general

axisymmetric eigensolution is

ZAnPn(CosO){f"+ nln+l

n I (n +l1)
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where Pn denotes the nth Legendre polynomial.) Then for r >> L this inner potential 0 has

an harmonic multipole representation, in which the monopole must be absent

a 'a ( i + aij a, W +.... (2.3)

the leading term of which is a potential dipole,

0 - ai  /N .(2.4)

For example, in the case of a sphere of radius L the boundary condition on 0 is

V Vcos0 onr =L
ar

if the velocity V is in direction 0 0, and the potential is

VL3

0 -- cos02r2

which is precisely (2.3) if a = (1/2 VL 3 , 0, 0) and aij = .... .

Now we argue in a complementary fashion that if r >> L then the body appears, to

leading order, as a singularity at the origin, so that for r >> L we seek a solution of the full

Helmholtz equation, satisfying the radiation condition, with singular behavior at r = 0. The

most general such solution is

eikr /ikor\ a2  eikor\
bi  +bi +... (2.5)r laxi b r xi xj

b a (\r 1 ax~i  +"

when r << k'. Thus in an overlap domain

L << r << k0

appropriate terms from

bbi  L r)

r ax1 \r

5



and ai  - ( ..

should be identical. The obvious choice is

b= 0, ai = bi , (2.6)

and thus, since a is known in terms of V for a body of given shape, we arrive at the leading

order wave field in the form of an acoustic dipole0 e
aj ik(r)' a i , r

(a - x)
iko  exp(ikor) (2.7)

This result is in fact correct for a compact body of any shape. The argument is presented

with such authority by Landau and Lifschitz [101 that one is only inclined to examine its

weak points when one uses the same argument only to arrive at a plainly wrong result.

Although this simple kind of argument was used a lot by Lord Rayleigh [ 1 I I and by

Lamb 1121 (to examine sound transmission through rows of parallel slits in a screen, for

example), it is not difficult to find simple problems in which a strictly comparable result goes

badly wrong, and we now give two such examples.

Take, for instance, the case of plane wave scattering by the said compact body. If the

incident potential is

= exp ikox

then the scattered field ¢ satisfies

(V2 +k') - 0
0

r-1 exp(ikor) f(O) as r *o (2.8)

nV = -D • Vo i on the body

which is almost the problem (2. ) again. For r << k0 the potential is harmonic and the

incident stream is effectively a uniform stream, 0' ,- (iko)x and therefore in the case of a

sphere the leading order inner field is precisely as before if we make the substitution V - iko.

Whether or not the scatterer is a sphere, the inner potential still has the form (2.3), dominated

for r >> L by an harmonic dipole. Again, we can evidently "match" this dipole to an outer

wave-field acoustic dipole

6
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by choosing the strength bi of the acoustic dipole to agree with the ai of the harmonic

dipole in (2.4).

This time, however, the casual approach is quite inadequate. In fact the directivity

function for the leading order wave field scattered from a compact sphere is

f(O)= 2-3 cos0

i.e., the sum of equally important dipole and monopole terms. The correct monopole strength

cannot be found from first-order matching alone, for the dipole is more singular than the

monopole as r -- 0, and so dominates at leading order as we come in towards the scatterer.

The monopole strength is in fact determined by compressibility effects in the small scattering

region, expressed analytically by the next term in the expression near the body. We shall

comment on this again after looking at this scattering problem in detail with MAE.
The Landau-Lifschitz problem of sound emission by an oscillating body also goes wrong

when there is a uniform mean flow past the body. Then the answer one gets depends on

whether pressures, or potentials-or some other field variables-are matched. For again, the

outer behavior of the potential perturbation near the body is a dipole

¢-- ai(t) ax. (2.9)

and the leading term for the pressure (p = -pO/at + U a/ax) 0) is

p -P i(t) G) (2.10)

It is argued that this should be matched to the inner limit of a solution to the convected

wave equation, for when r > L the steady perturbation due to the body is small and only

the uniform flow at speed U remains. For simplicity suppose that the free stream Mach

number M = U/c o is small, so that we can neglect M2 compared with unity. Then a wave-

field 0 which agrees with (2.9) in L << r << k-o1 is

,: ; (2.11)

The associated pressure in the wave field is then

7



r _ r

and for r << 0 that has the inner limit

p - -p i(t) xi ((-M cos0) (2.12)

where x = r cos 0 and the stream is in the positive x-direction. Equation (2.12) does not

match (2. 10), but differs from it by a Doppler factor (I - M cos 0). Similar differences arise

if one matches the pressures and then considers whether the velocities agree.

The message of this section is then simply this: that even to leading order some care is

needed in ordering terms correctly, and a mathematical rule for matching must be devised

and observed without the use of physical reasoning to shortcut any steps. I have heard it

said that singular perturbation techniques were not in fact invented where and when popularly

supposed (e.g.. in Cal Tech in the 40's and 50's) but by such men as Rayleigh nearly a

hundred years ago. I think the examples given here show that that is not a tenable view.

The great 19th Century physicists discovered a physically appealing idea with something in

common with modern methods- but they did not discover the mathematical formalism for

tuining their ideas into a reliable method, and perhaps did not appreciate the possibility of

errors arising in the way I have tried to indicate. It is regrettable that the great book by

Landau and Lifschitz should advocate the physical rather than the mathematical approach.

but it is interesting to note that they attack the scattering problem by a completely different

method (which of course gives tI:t right answer).

3. FORMAL APPROACH TO MATCHING

It is a fairly general criterion that a perturbation problem (a problem containing a para-

meter e where we are interested in the approximate behavior of the solution as E tends to

some value, usually zero or infinity) is singular and singular in a way calling for the use of

MAE. if the problem involves two dynamically significant length scales whose ratio becomes

either large or small as e approaches its limiting value.

Low-frequency acoustic generation and scattering problems exemplify perfectly this kind

of singular perturbation problem and its treatment by MAE. (In one problem 171. to whwv'

we shall return later, an acoustic problem served to highlight an extremely subtle, though

probably common, failure of the Asymptotic Matching Rule as widely practiced in the

8



literature and to show how a modified rule could be devised to rectify matters.) The pertur-

bation parameter is the Helmholtz number e = koL which tends to zero, and the two

obviously significant length scales. L characterizing the body geometry and k-1 characterizing

the wave propagation. become asymptotically disparate as e - 0.

Consider for definiteness a sattenng problem, in which r' denotes the dimensional

position variable and #'(r' k, Li is the scattered potential for an incident potential

exptkx'l Throughout thi% ietion the additional dependence on angular variables (0, 4')
will he Suppr-s-d I , ,SSI the ,mallnes of vainous terms as e -- 0 we need dimensionless

variable% lhe polentia . alrt-Ad dtinwnas'nkess. and either L or k-1 can be used to normalize0

lengths We %hAll ij€c thr foi4win# i ,14.aqon

r ' i + !'wurr piaiton coordinate

- I *it denotes the outer potential

R . ,ntce - the lriner position coordinate
I t

LR. k,. Li - 4R. e denotes the inner potential

We want to know how O(r. 0i behaves as E -. 0 for all values of r from c to ao or

equivalently how O(R. c I behaves as f -. 0 for all R from I to -. because in general one

needs to know the directivity of the scattered field at infinity and also the pressure on the

scattering body. It is in the nature of a singular perturbation problem that it is necessarily

impossible to find a single Poincar6 asymptotic expansion, which in the simplest case would

be a power series in c.

O(r, e) - 0o(r) + e0,(r) + e2 
2 (r) + ... (3.1)

which holds over the whole range of values of r of interest. This is because when such a

series is inserted into differential equation and boundary conditions and like powers of E are

equated one has to assume that r is fixed and 0(1). Usually in these problems r can be

allowed to increase indefinitely without affecting the process of equating powers of e, and so

boundary conditions at infinity - the radiation condition, for example - can be imposed on the

functions 0., 1, .... if r is allowed to become small, however, the whole basis for the

expansion (3. I) is undermined as the terms then have different orders of magnitude from

those postulated in the expansion. In particular this means that the terms 0o , 01 .... cannot

usually be made to satisfy the required boundary condition on the body, where r = O(e).

9



Consequently:

(a) We cannot find the pressure on the scattering body from the outer expansion

0(r, e) - 0 (r) + eOl (r) + e2 02(r) +

which is unlikely to hold when r is as small as e.

(b) We cannot at the moment find even the far-field directivity from the outer

expansion, because that expansion contains undetermined constants, and even functions,

arising from the fact that only one boundary condition (at infinity) can be applied to the

outer series.

Similar considerations apply to the inner potential which also, in the simplest case,

might have a power series expansion

(,(R, e) - 4 0 (R) + e4)1 (R) +e 2 4 2 (R)+... (3.2)

Formal processes (substitution in equations, equating powers of e, etc.) will lead to a partial

determination of 4bo. 4l, etc., only for values of R of order unity. One expects therefore to

be able to apply the boundary condition on the body, but not the condition at infinity, so

that we can certainly not find the directivity function from the inner expansion nor can we

at the moment even find the pressure on the scatterer from that inner expansion because of

the presence of undetermined constants and functions in 4 o , 0 1 9 ...

The inner and outer expansions are not uniformly valid. The outer holds in the wave-

field r = 0() and usually right out to infinity. It may also hold for some smaller values of r,

down to r = 0(e 112 ) perhaps, for example, but it will not usually hold uniformly down to

values as small as r = 0(e). The inner holds around the body, R = 0(1), and perhaps also for

larger values of R, up to R = O(e "1/4) say, but is unlikely to hold for values as large as 0(e "1

which are in the wave zone where r is the natural variable.

Now the inner and outer series are just different approximate representations for the

same function 0'(r', ko , L), so the question is "Can that fact be utilized to pin down the

indeterminacies which exist in the inner or outer expansions separately, and so to find approxi-

mate solutions covering the whole range of interest?"

An affirmative answer to that question can be given for the case when the inner and

outer expansions overlap strongly, that is, when both are simultaneously valid for a range of

intermediate values of r, r = 0(et) say, where

0 <t i < < 12 <1 (3.3)

The number a 2 is connected with the smallest value of r for which the outer expansion holds,

10



while al is connected with the largest value of r for which the inner expansion holds. In the

example just quoted, the outer expansion held down to r = O(e1/2 ), so that a2 = 1/2, the

inner up to R = 0(e'1 14), this corresponding to r = O(e314) and giving ai = 3/4. Since a, > 2

there is no overlap in this case, there is no known way of "matching" the inner and outer

expansions, and indeed no general method may exist at all. If the inner holds up to

R = 0(e 1 /2 ), i.e., to r = 0(Cl/2), then a, = a 2 
= 1/2 and there is only marginal overlap along

the line a = 1/2 rather than in a domain a, < a < a 2 . In this case it may or may not be

possible to match the expansions. No general rule is known and examples can be given of

both possibilities [7, 13]. If, on the other hand, the outer holds down to r = 0(e51s ) say,

the inner up to R = 0( 112 ) then there is strong overlap in the domain r = 0(ca) where

1/2 < a < 5/8

Then there is a matching rule, which, in the simpler problems at any rate, is sufficient to

uniquely determine the various unknowns in the inner and outer expansions.

One version of the rule runs as follows (the Intermediate Matching Principle). Suppose

one knows in advance that an overlap domain r = 0(ea) exists for a given by (3.3). (We

should note that in general the values a, and a 2 will depend upon the orders to which the

inner and outer expansions, respectively, are carried; a, will be a non-decreasing function of

the number of terms retained in the inner expansion, a 2 will be a non-increasing function of

the number retained in the outer series, so that the width of the overlap domain will, if any-

thing, reduce as the expansions are taken to higher order.) Then one introduces an interme-

diate variable r, by r = ear*, R = r*/el- a, so that r - 0 and R - o as e - 0 with r, fixed.

Inner and outer series are then expanded as e -' 0 for fixed values of r, and corresponding

terms, functions of r* and e, are made to agree. If one does not know the range of permis-

sible values of a in advance one has to proceed tentatively, introducing the intermediate

variable and trying to see whether there is a range of values for a which will allow the inter-

mediate expansions of the inner and outer series to be matched term by term.

This is, at present, the most fundamental of the available matching procedures, though

probably not the most common nor the simplest to use in practice. Difficulties arise, for

instance, when the inner and outer expansions are re-expanded in terms of the intermediate

variable r*, it not being clear how many terms in the expansion are to be retained unless

information is to hand on the domain of validity of the inner and outer series. The book by

Cole (21 gives an extensive illustration of the use of the intermediate matching idea, although

it avoids the difficulties inherent in this approach when carried to high order.

The most common procedure, and in my experience by far the most straightforward to

II
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use in a routine fashion, is a version of the principle put forward by Van Dyke I I I as the

Asymptotic Matching Principle. In its original version it is ambiguous in soirse cases, so we
propose here, as in (7), to use the following notation and principles:

We write

*(m)(r, e) = 0 (r) + e0 1 (r) +.... + emm(r) (3.4)

for the outer expansion truncated beyond 0 (em) . If the outer series really is asymptotic, then

I O(r, e) - ,(m)(r, e) I = o(em) (3.5)

for appropriate values of r. Now we write r = eR in (m), hold R fixed and expand through

terms O(en) say. This gives a perfectly definite and readily calculated set of terms which will

be denoted by

0(m, n) (3.6)

Next we take the inner expansion and truncate it beyond 0 (en), giving

.t(n) (R, e 00 4 (R) + ... + en b n(R). (3.7)

In this we make the transformation R = re, keep r fixed and expand as e -- 0 through terms

0(em), giving another set of terms denoted by

*(n, m) (3.8)

As things now stand O(m, n) is a function of R, e, 40(n, m) a function of r, e, but we shall

understand that both are expressed without any further expansion or approximation in terms

of, say, r, e.

Then the Asymptotic Matching Principle states that

O(m, n) -- b(n, m) (3.9)

It is easy to believe the truth of the principle on the basis that each side of (3.9) is an

asymptotic representation for the potential in the overlap domain, and asymptotic representa-

tion with respect to a given set of gauge functions like integral powers of e is unique, so that

the two sides of (3.9) must be identical. That reasoning is generally quite false, though the

conclusion as expressed in (3.9) is correct. Although O(W) and ((n) do have asymptotic

significance with respect to 0', the functions O(m, n) and 4(n, m) in general have no asymptotic

significance whatever. This point is perhaps made clearer if we consider unequal values of m

and n, say m > n. Then it appears that genuine information has been thrown away in
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forming n(m, n) from O(m), while information of no significance has been retained in forming
b(n, m) from $(n). The principle (3.9) must not, however, be regarded as saying anything

about the common asymptotics of the two expansions; it merely defines two functions

associated with the expansions in a clearly prescribed way, and asserts their equality.

As far as justification of the MAE procedures goes, one can say the following. It is

necessary first to prove that the formal substitution of an assumed series like (3.1, 3.2) into

equations and boundary conditions will produce an asymptotic series for any values of r, R.

This is a difficulty common to all perturbation methods, and to many other processes (solution

of differential equations by series and contour integrals, for example) as well, and is not a

difficulty peculiar to MAE. Under this heading one needs also to establish the range of values

of r, R for which the outer and inner series are asymptotically valid, and thus to find the

overlap domain, if it exists. Proofs of these points can be given in some cases, but the proofs

fall far short of covering the kinds of problems of immediate research interest. Granted the

resolution of these difficulties, however, the two overlapping expansions must match according

to (3.9). This has been proven 16. 7. 13] under various different assumptions about the over-

lap, and with greater generality than we have so far required. The proof given in [71 involves

showing that there exist numbers (mi, n1,) such that all the terms inside the (m, n) "block"

(the one of interest) plus some other terms outside the (m, n) block but inside the (mi, n1

block together constitute an asymptotic representation for 0' with an error smaller than the

smallest term in the (in, n) block and for some intermediate range of values of r. This is done

for both $ and 4 and the two asymptotic representations are equated term by term. The rule

(3.9) is just a statement of this term by term equality for a particularly efficiently calculated

block of terms.

The Asymptotic Matching Principle has been proven also under the following more

general conditions, which are sufficient to cover most applications. Suppose that the inner

and outer expansions proceed in fractional or integral powers of E multiplied by integral

powers of ne,

0(r, e) - 0(r) + e~ne 1 (r) + e0 2 (r) + e2 kn2e 03 (r)

+ E2 Qne 04 (r) + e 2 0(r) + C3 Qn3e 6 (r)+... (3.10)

O(R, ) - e 1 2 o(R) + e4 t (R) + e3 2 ne 0 2 (R) + e3 /2 3 (R)

+e2ene b 4(R) + e2 5 (R) + E5/2 Qn2 f o((R) + ... 3.1)

13



being a case that arises in diffraction by a thick rigid plate 171 and is interesting in several

respects. Then a function like 0(m) or 4(n) will be constructed as before, by terminating the

expansion beyond W(em) or O(en) as the case may be, where now m and n can be any

rational numbers which may or may not appear in either of the series. In truncating the

series, all logarithmic terms are to be grouped together according to the order of their

algebraic multiplier, and are never to be separated out. Thus, with the above forms for

example, we have

0 1 + fo +  ne 0, + C02

01/) =~ 01nO 1 +~

VD = f1/ 2 b0 + f(

( 3/2) = E 12 @ o + E 4 + f /2 Vne (b2 + f3/2 43

Having taken any two rational numbers m and n, and formed 0(m) and (n), one then writes

r = eR in 0(m) and expands up to and including all terms which are not smaller than en .

writes R = r/e in @p(n) and expands keeping all terms not smaller than em . giving the quantities
0(m, n) and 4(n. in) Again, algebraic order only is taken into account, e1ne being regarded

as O(ex ) whatever the value of p. Then the matching principle

(m n) -(n ) (3.12)

has been established also 17, 131 for expansions of this kind.

Occasionally it is necessary to generalize this rule further, as for example in the case of

scattering by a soft body I1. But that example deserves separate study for other reasons,

and for most problems the principle (3.12) is adequate.

4. SOUND GENERATION BY FORCED OSCILLATIONS

We return now to the problem of sound generation by the forced oscillation of a rigid

compact body. For definiteness we take a sphere of radius L whose velocity in the positive

x'-direction (0 0) is V exp(-iot), so that we need an axisymmetric solution of

0S (V'2 + k2)' = 0

-' " r' 'I  exp(ik or ) f(O) as r , **(4.1)

-- =Vcos0 onr'=L

14



In terms of the outer variable r = kor' and with an arbitrary normalization for 0', say

'= VLO, the complete problem is

(VI + 1) 0 0

-"-1 exp(ir) g(O) as r- (4.2)

=-- cos0 on r = c €

with c = ko L. Letting -- 0 makes the body boundary condition tell us no more than that

0 must be singular in some fashion as r -- 0. Whatever the form taken by the outer expansion

(and that cannot usually be assumed in advance, for it is dictated to some extent by informa-

tion from the inner region) all terms in the outer expansion must therefore be radiating

axisymmetric solutions of the Helmholtz equation, the general solution of which is a multipole

series,

a)+ai i) +aij axixj + (4.3)

A little thought shows that the most general axis~vmmetric solution must be

a + a! (e+,,Lr

(ei) i 2e i )+ al22 (!)+ a,, _x3  e
r ax r a x X2  rr83

+ a, 2 2 a V2 i\) + (higher multipoles than octupoles) (4.4)

Let us assume therefore that the outer series starts off with a term of algebraic order, e o

say, where 00 has the above form, in which V2 denotes the Laplace operator in the two

transverse coordinates,

2 
a 2

a.y. 2 aZ
2

The coefficients a, a, a1 1, etc. will then be given a superscript (o) to indicate that they refer

to 00.

We can also simplify (4.4) somewhat, using the fact that for r * 0

(V 2 
eir 0

15



and therefore the terms with coefficients a 2 2 and a, 2 2 can be assumed to be already included

elsewhere.

Turn now to the inner problem, obtained from (4.2) by writing 4"(R, e) for O(r, E) and

r =eR, so that

(V2 + C2 ) )= 0

4" R- exp(ieR) h(0) as eR oo (4.5)

= cos 0 on R =I

the radiation condition obviously being unenforceable in the limit e 0.

The body boundary condition indicates that (with the chosen normalization, q' = VL'4)

(D is of order unity in the inner region, so that the inner series should take the form

(P 'FD + (terms which vanish with E.

(The only other possibility would be that 4' starts with a term which becomes infinite as
0~ O~ - - (F say. Then 4- would have tW be an inner eigensolution, the general

axisymmetric form of which was given following equation (2.2). If one persists with this and

attempts to match with the outer solution, one finds of course that 4, = 0. The reader

should verify this after seeing how the first nontrivial matching is carried out.) The problem

for 4,0 is then

V2 'PF = 0 V 40 =  (4.0)

A = cos 0 on R = I

whose general solution is

4,o- cos0+ 0A )PPcosO) R +  v(4.7)
2R 2  

v = I

the sum of a particular solution which decays at infinity, plus a general axisymmetric

eigensolution satisfying

VR 'F 0- 0 on R =

16
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For matching, note that when O(A) - eX04 is expanded with r = eR, the leading term

will involve only inverse powers of R, while when 4(0) = 0 is expanded with R = r/e, the

leading term will involve the positive power rp unless we choose A(,O) 0. Thus no inner

eigensolutions are needed to leading order (though they are needed at higher order to match

the ascending powers of R which arise from the expansion of the phase factors exp(ieR) in

(4.4)).

We then have

4,(o)= 4 -b cos0
2R2

.(o)()os 2r

and so

(0, o) = 4(o, i)= 0

4(0,2)- cos = 4 (O,3) = 4)(0,4) ....

2r
2

On the other hand, for the leading outer solution we have

ex) = 0

and 0(0(eR) = 0(eX - N) where N is the highest multipole order present in (4.4) (N =I

monopole, N = 2 dipole, n = 3 quadrupole, N = 4 octupole, etc.). Suppose then that X were

equal to 0. Then 0(°)(eR) = 0(e1 ) at the very least, and because that term must match with

0 (o, o) = 0 the only possibility is that 00 = 0. The same conclusion is reached if we take

X = I, because 4(0, 1) = 0. We therefore try taking X = 2 - i.e., the order of the leading outer

term is that of the first nontrivial term in the outer expansion of the leading inner term - so

that we have

0(2) = e2 O".

Since the expansion of 4(o)(r/e) contains no inverse power of e it follows that only the values

N = I and N = 2 are permitted in 00, and hence

,0 a1° )  -+ aw° ,1 14.8)
(.
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002 (eR) = ea(o) + a °) aX ( E)

0(2,o0) .(0).. (o) ICos6

(4.9)

4,(2, 1) (o () ( R) + _(2, 0)

.. .Ia +\ = a o 0 +

042, 2) 2 (o) u( + 0(2, 1) e21k1 Cos + 0(2 , ')

From the matching

0(2. 0) = 4)(o. 2)

we thus get a(o) 4.10)

which determines the dipole strength, but not the monopole a(o). We see, however, that this

could be found from 0(2- 1) in (4.9) by matching to 4(1, 2) and therefore, prompted by the

fact that the inner expansion of 0(2 )(ER) contains terms 0(1) and 0(e), we try to continue

the inner expansion with

4) -) +E Al + o().4

(b is an inner eigensolution

00

Z = P... ,, P(c1s 1 (4.12)

and the expansion of

must start with terms 0(1) and O(e) in order that V(1, 2) can be matched to 02. in (4.9,).

It follows that only the term with P = I can be present in (4.12) and that then

24)1 2) - cos+ At 1 rcos0 (4.13)
2r2

This is identical with
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*b(2, I)=ea(O) !- cos0

R 2R 2

if and only if

A( ) = a( ° ) = 0 (4.14)

Thus matching of the second order inner solution to the first order outer solution shows that

the second order inner solution is identically zero in this case, and that the previously undeter-

mined leading order outer monopole strength is also zero. We have recovered the Landau-

Lifschitz result (2.7), and the "obvious" choice (2.6) is seen to be correct-but for a far

deeper reason.

At this stage we will break off and make a similar examination of the plane wave

scattering problem, where we shall see that the second order inner problem is not trivial, as it

was above, and this has a profound influence on the leading order outer field, making the so-

called "obvious" choice (2.6) of zero monopole strength not only not obvious, but actually

incorrect.

5. PLANE WAVE SCATTERING

For the scattering by a fixed rigid sphere of radius L of a plane incident wave of poten-

tial exp(iko x'), the problem for the scattered field ' is

(V' 2 +k 2 ) '=0

*,r' - exp(ikor') f(0) as r' -- c (5.1)

ar' -ik ° cos0 exp(ie cos 0) on r' = L

The potentials are already dimensionless and hence the problem in outer variables takes the

form

(VI +1) 0 = 0

$ r-1 exp(ir) g(O) as r -- cc (5.2)

___i cos0 exp(ie cos 0) on r =e
ar

while in inner variables we have
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(V 2 +E
2

) S 0

P R-1 exp(ieR) h(O) aseR- (5.3)

aR

As in #4, all outer solutions, to any order in e, are outer eigensolutions. with the general

form (4.4), but the order X of the leading outer potential, 0 - EX 0, is not yet known. It

can be argued, as before, that the order of the leading inner potential is that distinguished

order (a term used by Cole 121) for which the solution is not just an inner eigensolution.

Thus

where

oI.

/: V P +"v +

and again, as in f4, all the A(O ) = 0. We then find that X has the value 3 this time, with
V

monopoles and dipoles permitted in 0., so that

S~e3¢o +...

eia (eir
0 = a(° ) (- + a(0) ax (5.5)

It might be thought that, since X is 3 here rather than 2, quadrupoles should also be

permitted in 0o this time. That cannot be, however, for then e 3 oo(elR) would contain an

0( ) term from the quadrupole, which could not be matched to the inner solution which is

0(e).

The matching rule

00(, 1) =- 4)(1, 3)

determines the dipole strength as

a(0) - - (5.6)

but again fails to determine the monopole strength. We therefore move on to the second

inner problem, the inner expansion continuing with

20



4p eo +e 2 4 +""

The difference between the generation and scattering problems is apparent now, in that 4) is

not an eigensolution but a solution of

R4,= 0S 0~ on R°  1 (5.7)

aR- -cos 2 0  on R= 1
Writing the boundary condition as

acF1  2p( ) I

aR P2 (COS 0) +3

we easily find a particular solution in the form

2 P 2 (cOs)
¢I 9 3  3R

3R

to which is to be added the general eigen solution

00 (CO 6) Rv
Z A" ) Pv(c O)Rv+ R

Application of the matching rule

00, 2) = p(2. 3)

now determines the monopole strength as

a(O) (5.9)3

and shows that A(')  0, so that the inner eigensolutions play no part in the second term

also.

The leading order wave-field is then

3 reir
€"3 ! ea3 r 2i (.e)

from which the directivity function, as r -* cc, then follows at once as proportional to 2-3

cos 0, as quoted in f2. Note that the monopole term in the far-field is directly comparable

with the dipole term, yet it arises from a weak monopole -e 2 /3R in the near-field as
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r2

compared with the dipole ie cos 6/2R2 . Such subtleties are the essence of Acoustics, even in

the low frequency limit, and Acoustics is therefore an excellent vehicle for exposing aspects

of techniques which are easily overlooked in apparently more complicated but basically less

delicate fields.

The above procedure may seem rather laborious but we have gone into it in some detail

because a routine framework of this kind is indispensible in more difficult problems. More-

over, with practice the way in which the expansions are likely to proceed can often be antici-

pated (though as Van Dyke [II emphasizes, many workers have obtained incorrect results by

failing to suspect the presence of certain kinds of terms, usually logarithmic terms, whereas

adherence to the procedure used here will greatly reduce that risk) and it not always necessary

to include the most general eigensolution if one keeps in mind the forms of the terms which

need to be matched (though again, failure to find the most general eigensolution, particularly

in nonlinear problems, has led to many incorrect results in the past, and general eigensolutions

should be included if there is the slightest suspicion of difficulty).

6. HIGHER APPROXIMATIONS

We continue here with the scattering problem to obtain one more term of each series.

The inner series so far is

-2R P 2* P (Cos 0 )  .

(b cos -2 0 f + +o(e2) (6.1)
R R3  3R

If (p(2(r/e) is expanded for e - 0 the first terms are O(E3) and O(e) so we attempt to

continue the outer expansion in the form

C300 +C501 +o0(e )  (6.2)

using the matching rule

(2. 5) - $(5, 2) (6.3)

Since b = 0(e), the expansion of O(eR) cannot contain any terms larger than 0(e), and so 0,
can contain monopole, dipole, quadrupole and octupole elements, with the general form

atl) ( +a +_) 2 + a3 e(e (6.4)r ax (\r axr2  / ax3 \T)

Then
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0(s) (eR) = e3
0 . (eR) +e 5

1 (eR)

and expanding gives

(I +ieR--"-"+..) a (1 +ieR- + ... )

(3 eR 2e 2aXR

a~~~(1) a(~v+.
+e 5 a (1 (1 +ieR+...) a' a (I +ieR+...)

eR 2 aX R

a,, a2 (I +ieR+..) a(, a3 (I +iR+ ... )
+ ' (6.5)

e 3 ax 2  R e 4  aX3  R

Truncating this expansion beyond 0(e 2 ) gives

0(5.2) j 2 1 I ia 1+C2 ) a' (-L +e l (6.6)
- ,_ R/ all 2 /i\ 3

aa 2  \"IR '11 a3RI

while from (6. 1 )
42,s. i= I P,(cosO) I (67

=) cos 0 - es f -  (6.7)
2r 2  r3  3 r

Express (6.6) and (6.7) in terms of the same variable and use the fact that P2 (cos 0)

(1/2)(3 cos2 0 - 1). Then the matching rule (6.3) requires

if o I 2 (3 cos2 0- I 2 1 _ I + i C

2R 2 C 9 R3  - R I R R2

+ C ( 3 cos'0-_1 ) a, [ 9coso 15cos3 0

+ 2 a11  R 3  L R 4  R 4

where the differentiations in (6.6) have been performed using aR/aX = X/R = cos 0. Thus

matching gives

a, 9

(6.8)
a(I) -

a111  0,
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and determines the most singular (octupole and quadrupole) terms in 01, but fails to deter-

mine the dipole and monopole terms.

To obtain these it is necessary to go further with the inner expansion. Consideration of

(6.5) shows that the dipole term in (6.4), with coefficient a(l ) , makes a contribution to

*"l(eR) of order 0(e 3 ), while the monopole, with coefficient aP') makes a contribution of

0(E4 ). Therefore a( 1 ) will be determined if we use the matching rule

O(5.3) = t(3, 5) (6.9)

which needs the third term of the inner expansion, while the monopole can only be determined

from the fourth term of the inner series and use of the rule

05.4) = 0(4, 5) (6.10)

Accordingly, we assume an inner expansion

4) - 4)0 +E 2 4 1 +e 3 0 2 +e4 3 +''" (6.11)

which gives the problem
2 i

V V2 = -4)0 - cos 0RR
R 22 2

(6.12)
_4) i I

2 +cos 3  on R= I
3R 2

for the third term. This is typical of the higher order inner problems; not only are the

boundary conditions inhomogeneous (as they were for 00 and 9b, ), but the Laplace equation

itself now has a forcing function related to the lower order potentials. Here the form of the

forcing suggests looking for a particular integral of the form f(R) cos 0, and then one quickly

finds that f(R) = (i/4). We therefore write

2 cos 0 + 4 (6.13)

and then
V2 0=0

= + -1 cos 3 0
aR 2

= +~ P3 (cos 0) + - P(c ) (6.14)
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where PI (cos 0) = cos a, P3 (cos 0) (1/2)(5 cos3 0 - 3 cos 0) and the transformation to

Legendre functions is made so that we can most readily use the facts that RnPn(COS 0) and

R-(n + 1)Pn (COS 0) are axisymmetric solutions of Laplace's equation (and are the only ones

which are finite on the axis, where cos 0 = 1 1). We now try to eliminate the forcing terms

from the boundary condition (6.14) by looking for a particular solution

P3 (cos 0) P1 (cos0)

R 4  R 2

which gives a = -i/20, f = -3i/20.

To this we have to add the general inner eigensolution, as given in (4.7) with coefficients

A( 2 ) , so that the general solution for 4b is

i i P 3 (COS0) 3i P (COS08)
(P2 CO 0 4o 20R04 20 R4  2

+ Z A(2) Pv(cos0) Rv+ R;-J (6.15)
v=1

Note here that, whatever the values taken by the A (2) , t2 does not tend to zero as R -

and there is no way of making it do so. At still higher orders the inner potentials will not

merely remain finite as R - -, but will actually tend to infinity.

The function 4p(3) is now given by
r'3) P2 (os 0) E3 +i3 3i P (cOs 0 )

(3)~ ~~ i- 2 7+ cs0- E
-- 7 cosCO cc r3  3r 2

7+ 3 (2) p,(O)(os +( P )(f

-os 4 +e 2: A V c )( + r (6.16)

in which the leading order terms must be at most 0(e 3 ) in order for this to be matched to

the outer series which starts with 3
o . Therefore

AV2) = 0 (6.17)

and again it seems that the inner eigensolutions are "too singular" as R - -- to be tolerated.

We shall return to this in a moment. For matching according to (6.9) we have
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ife 2 P2(cos0) 62 ie 3  3i P1 (cosO0)
e - cos - 2  R + "" cos 0 - - R , (6.18)
2R2  9 R 3 A 4 20 R2

-after truncating (6.16) at 0(e s ) and then returning to the variable R, while from (6.5) we have

3) E2 ie3  i f cos0 2

3IR 3 L R2  2 0o

() Cos+!e 3 R0 (6.19)

(use having been made of the resuIts ((Its)).

The equality of (6.18) and (6.19) determines the dipole coefficient as

am = + 20' (6.20)

and all other terms in (6.19) have identical counterparts in (6.18) except for the term -ie 3 /3.
This outer term is unmatched because of a failtre to take the most general inner eigensolution

in (6.15). To that eigensolution should be added the constant term

A(2
)

A0

which is all too easily discarded as irrelevant. It has a serious effect at higher order, however,

b-cause later the function 4)2 will act as a forcing function for the inner term e5 4 4 , and the

constant part A12) of 42 will induce a variable part of 44 and hence, through the matchings,

of the wave field too. It we add A(o2) to (6.15), (6.18) acquires a term

3 ( 2)
A0

which can be matched to the corresponding term in (6.19) provided

A(2) (6.21)

Thus the lowest order (least rapidly growing) inner eigensolution is called into play in the

third order inner solution.

To find 4 3 in (6.11) we have the problem
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V2 t 4) =2 P2 (Cos ) +_R 3 R3  T3R'

as3  (6.22)
M -cS4 0 on R

This is a complicated but straightforward problem which is tackled as before. First we find a

particular integral to annihilate the forcing in the differential equation. Recall that

R R2 aR aR! R2 sin 0aok aol

and that

a(sin 0 -1P (Cos 0) + n(n+ 1) P (Cos 0) 0,

and then it is not hard to construct a particular integral

I P2 (Cos 0)
6 R-2 7 R

so that we write

I IP 2 (Cos 0)
3 6 27 R (.3

Then

R 0

(6.24)

aR 6 6 27 2 (o )o

Rewriting cos 4 0 as

8 4 4(O )+1P CS0
35 P7(o )+~P(oO

we find

4 P4 (CoO) 5 P2 (CO ) 1

52 55 67 R3  T

plus a general inner eigensolution. Since the outer expansion begins with 0(ed), C4 , 43 (r/e)
cannot contain any terms larger than e3 and therefore the most general eigensolution possible

at this stage is
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A(3) + A(3) P, (Cos0) R +

0 2r CSc) R 2-

Hence

I 1 7 P2 (cOs0) 4 P4 (cosO) + 5 P2 (cOsO) 
3 6 27 R 525 R5  + 567 R3  + 3R

+ A( 3) + A(3) P (os 0) {R + -} (6.25)0 1 21R2

and we now have 4), that is, the inner expansion through 0(e 4 ), determined apart from

A 3 and A1
3)

Next we calculate 4)(4. 5), and transform it back to the variable R, with the result

t -(4.5) 4 3 5)(eqn. 6.18) + E4{1 R - P2 (COS ) +

+ + A( 3 ) R cos0} (6.26)

while
+ E 4 2R )

4  
+ a ( ')i_ 4 (,) a2

05.4)= (5.3)(eqn" 6.19) - - ( - (R) (6.27)6 12 3X ( R ) + 4 R 2 a  x 2

Performing the differentiations, using (6.8) for al) and matching (6.26) to (6.27) gives

I i (3cos 2 0-1)+ I A( 3) +V ) Rcos0
6 54 R 5R 0 1

- R - R cos 0 + + -o
6 6 R 18 ( R

so that

A(3) =oAO

A = - (6.28)
6(

a(1) = ,2--25
135

Thus when four inner terms and two outer terms are matched these terms are all uniquely

determined. Note that in the fourth inner term an eigensolution is present which grows

linearly as R -. a.. In still higher approximations the further eigensolutions are also needed in
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the inner series in order to match the positive powers of R which arise from the expansion of

the phase terms exp(ieR) in the outer series.

There is no particular merit, nor any great difficulty, in carrying the inner and outer

expansions further, and so one can determine the near and far fields to any order in E, though

the algebraic complexity increases rapidly with the order. The point we want to demonstrate

here is that adherence to the formal procedures provides a straightforward and routine way of

carrying the approximations through a number of terms, and that the matching rule can be

used to indicate how the expansions should proceed and what form of eigensolution is

sufficient at each stage.

7. TWO DIMENSONAL PROBLEMS: LOGARITHMIC GAUGE FUNCTIONS

Logarithmic gauge functions arise in many problems, and the aim of this section is to

show how they arise and how they can be handled by MAE in the context of two-dimensional

acoustic scattering problems.

We start by looking at the scattering o! a plane wave Oi = exp(i kox') by the rigid fixed

cylinder r' = L, so that the problem for the scattered field 0' is

2 + k ' = 0
0

- i k0 cos 0 exp(i k0L cos0) on r' L 7.1)

W' (r'Y-' 2 exp(i ko r') f(O) as r'-40o

the last of these being the two-dimensional radiation condition. In terms of outer and inner

coordinates, we have

(VI + I )0 = 0

ar . i cosO exp(ic cos0) on r e (7.2)
ar or 72

r-112 exp(ir) g(O) as r -.

and
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(V2+ e2)0 = 0
- ie cos0 exp(ie cos0) on R = 1 (7.3)

aR

4- R-' 2 exp(ie R) h(6) as eR -

the scattered field being, of course, symmetric about the line 0 = 0.

An inner eigensolution Av(R) of integral order v is defined as

AV(R) = (RP + R- v ) cos v 0 (7.4)

for v = 0, 1, 2. and satisfies

V2 A (R) = 0

aAv- =0 onR=l.
3R

The general outer eigensolution can be represented in various forms. The commonest repre-

sentation would be in terms of a sum of Hankel functions of the first kind and of all integral

orders,

00
Za. H( I ) (r) cosy0,

the typical term of which varies with r like r-1/ 2 exp(ir) for large r and so satisfies the

radiation condition. Here we stick to our previous type of representation in terms of multi-

pole derivatives of the fundamental solution H(O'(r) of the Helmholtz equation in two

dimensions. Thus we write the general outer eigensolution as

a2

al-)(r) + a. -L H(I) +(r) + ri + ...+(7.5)
0Ho 1() a xi 0 i axi axi

(x I , x,) being the position coordinates in a plane perpendicular to the axis of the cylinder.
As before. the solution symmetric about the x, -axis, 0 = 0, is of the form

aH (r) + a 1  H()(r) + a H()(r) + (7.6)

0 1 x 0 11 X 2  0" "

An advantage of using the form (7.6) is that we need only to know the behaviour of the

zeroth order Hankel function as r - 0, which is
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H(o"(r) I 1 l + 0(r4

+ 2i (Qn r +E-n2) 1 -Ir2 + 0(r4 + r2 + 0 (r4 (7.7)

where yE = 0.5772 ... is the Euler constant.

As in the previous sections, the first inner problem determines how the expansions start

off. Motivated by the boundary condition in (7.3) we assume

and then

V bo =0

aR icos0 on R I

so that

i o + A(O) A (R). (7.8)

P=0

Then

r P=O

and unless all the A(O) are zero, the leading term of the expansion of 4(l)(r/e) will contain

terms which are either constant or which grow with r. Such terms cannot be matched to the

leading order solution, because that is an eigensolution like (7.6) whose leading order terms

all contain either Rn r or inverse powers of r. Therefore we take

'(i) (r)= ifI Cos 0 (7.9)

which shows that the leading order term in the outer expansion must be 0(e 2 ), so that

S" 2o + ... (7.10)
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where 00 is given by (7.6) with superscript (o) on the coefficients.

Because the leading inner term is 0(e), e2
0 (eR) cannot be larger than O(e), and so

0o = a(°)H()(r) + a(°) x Ho l (r) (7.11)
0 0 1 ax0

is the most general possibility, consisting of an acoustic monopole and an acoustic dipole

respectively. Then

S 0 (ER)a(0)e2 1 nR+ ne+7 -n2- -)

+ 0(e4 Qne, e4) +e a(°) i Cos + O(e3 Qne, e3 ) (7.12)r Rwhich gives r R

S) =e ai(o) 2i cosO ( 3e a R (7.13)

Applying the matching rule

0(2. 1) = 4)(1, 2)

gives

a, 2 (7.14)

The situation is precisely as in the spherical problem. First order matching determines

the dipole coefficient, but does not determine the monopole part of the first order outer

field. To find that we have to take careful account of small phase variations in the scattering

region which are responsible for an acoustically efficient source mechanism. Analytically, we

expand (7.12) to next order to see how the inner series should progress and find that the next

terms are O(e2 kne) and O(e2), just as indicated in (7.12). We therefore assume

E e o + C2 Ine 4), + e2b2 + ... (7.15)

and we shall assume the matching rule

,(2, 2) = e2a(O) i ne +nR + 7  n2 ) + -i-i cosO =4(2,2) (7.16)

where we understand that e2 Qne 0, and e2 4b2 are to be taken as a single term 0(e
2 ).

0, is of course an inner eigensolution, and e2 4, 1 (r/e) can be no larger than 0(e2), since

that is the order of the outer potential. Thus
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is the only possibility. For (b2 we have the problem

VR 2

aR on~l(7.18)

This problem introduces the two-dimensional source potential Rn R. Writing the boundary

condition as

~2  1!( + cos20)
A 2

we look for a solution

cos 2 0

we find c 1/23-1/4, so that2 a n -

"' R R +A (7.19)

the form of the eigensolution being determined by the same argument as for (7.17). Thus

we have

i2() e cos 0 + E QneA() + e2 1 'Q R - 1 cos 2 + A()
R 2 n 4 R

((2) (r = rf o + e2 Qne V) + f2 Qn r - - 2Q

1 C4 CoO 0+2 At (2 (7.20)

which gives

,t(2,2) = ie 2 Cos 0 + C2 kne (A" (1) +eC2 Rn r+ el2)(.1

Matching (7.21) to (7.16) gives
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kO 2

a(4) (7.22)
4i

A(2  E2

which yields the monopole strength a(o) and non-zero eigenfunctions in the second and third

inner terms (b and P2
If we now go back to b(2)(r/e), as given by (7.20), we see that since A(l ) = 1/2 it con-

tains terms 0(e 2 ) which are matched to the outer solution, and then continues with an 0(e4 )

quadrupole term cos 2 0/r 2 . This suggests that we continue the outer series in the form

0 _C20 +e 4 02 +'...(7.23)

The choice of ¢2 here, rather than 01, is deliberate. €2 is again an outer eigensolution, and

as in the sphere problem we can allow up to three derivatives of H( )(r) in 02, but not more,

in order that e4 
2 (eR) be no larger, as e - o, than the leading inner term, which is 0(c).

Thus

02 = a ( 2 ) H( l )(r) + a(2) a H(l'(r) + (2) ax H(,(r) + 2 , -- H l'1(r), (7.24)

a 1  ax 0 "ax 2 0 111 ax

and without taking the inner solution further, the only matching rule we can use is that

$(2, 4 )(eqn. 7.20) = 0(4,2).

The right hand side of this equation can be calculated directly, with some effort, from the

assumed form (7.24) and the expansion (7.7). One finds then that

a(2)=0

(7.25)
2i (2) J

--a 1 1  4

and the monopole and dipole coefficients remain undetermined.

Expansion of 0(4) = (e2
0 + e4 

2 )(eR) beyond O(e2) produces terms 0(e 3 Qne) and

0(e 3 ), so that the inner expansion must take the form

4'-E e 0 + e 2 Qne b, + e2 ,2 + E3 Qne 4 3 + E34 + ... (7.26)
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The solutions for $3 and 04 are

-- AMo3 + A(3)(R + R-1) cos 9

$4= A(o4) + A()(R + R-1) cos 0

ii cos30 7i cos0
7T R Rn Rcos 0--2 -- 3 8 R (7.27)224 R3

and the matching rule to be applied next is

4(3,4) = 0(4, 3) (7.28)

Most of the details of this matching are unimportant. One aspect serves, however, as a vital

warning. We see from (7.27) that in 4$(3,4) there will be a term

E 4 r( Rnr-ne) cos 0 (7.29)

in terms of outer variables, and to this order there are no other inner terms of this form. In

the outer expansion (7.23) there are also no terms of the required form; certainly there are

terms which contain Qne when expressed in inner variables, but when these terms are

reexpressed in outer variables the Inc disappears from them. Therefore the outer expansion

as it stands contains no term which can possibly match (7.29) according to the rule (7.28)-

and (7.29) has a definite non-zero coefficient, because the term in (7.27) which gives rise to

it, namely - i/2 R Qn R cos 0, is a particular integral for the equation

i cos 0
R4 1 R

The fault lies with the assumed form (7.23) for the outer expansion. Although the

expansion of 4"(21(r/e) produced only algebraic terms O(e2 , C4 ), indicating the form (7.23)

the presence of Qne terms in the inner expansion at one stage must be taken as a warning that

they will probably arise at the next outer stage. Thus in place of (7.23) we should have

anticipated

2 4 +242 + 4 kne , + + ... (7.30)

and this choice enables all the matchings to be effected without difficulty -though the

algebraic details are horrendous. A further point to be noted is that because 0, necessarily

contains Hankel functions which have logarithmic singularities, the expansion of e 4 Qne 01
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will involve a term e4 in2 2- and therefore the inner expansion presumably takes the form

4 e 4,0 + E 2 Rne 4 1 + 
24,2 + E

3 kne f4 3 + E34,4

+ E4 Rn2e 4,5 + E4 ine 06 + e4o 7 +."' (7.31)

It is necessary in fact to determine all the eight functions in (7.31) in order to uniquely

determine the three functions in the outer wave field (7.30).

Once again then, low frequency acoustic problems bring out subleties in the matching

procedure. Although we have not proved it here, it can be shown that failure to regard

C3 Qnc 43 and c34,4 in (7.26) as a single "block" leads to an incorrect determination of some

of the coefficients in the outer terms 0, and 02 (see [9] and (7) ). We have also seen how

the presence of logarithmic terms may be indicated by systematic use of the matching

principle, and that once they have arisen their presence must be suspected in all subsequent

terms of both expansions.

8. PURELY LOGARITHMIC GAUGE FUNCTIONS: SCATTERING BY SOFT BODIES

The problem of plane wave scattering by a soft cylinder-on which the total potential is

zero -provides an excellent illustration of the way in which purely logarithmic gauge functions

may arise, leading to series which are useless for practical purposes because of the slowness of

their convergence. We show how naive application of the matching principle fails, but then

show how modification of the gauge functions together with an insistence on all matchings

enables the slowly convergent series to be "renormalised" into a rapidly convergent series.

If the cylinder is circular, of radius L, then the inner and outer problems for the

scattered field € corresponding to an incident potential exp(ik o x') are, respectively,

(V2 + el) 4) =0(v 621,=0(8.1)

4=-exp(i cos0) onR= I

(VI + 1) 0 0
(8.2)

0 - r"1/2 exp(ir) 1 (0 as r - cJ

The inner eigensolutions this time satisfy
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V2 1 = 0, 4 0 on R = l and are

Ao = RnR } (8.3)

AV =(R
V -R -P) cosv 0  (v= 1,2, ... )

while the outer eigensolutions are, as before, of the general form

ax
a H-l (r + a1 

2
I

1 r . (8.4)
o H (r a1l a)x

The boundary condition in (8.1) indicates that = 0(1) as e - o, so that if

then then (8.5)

bo I +Z A (O) Av (R)
P=O

and we cannot decide which eigensolutions may be permitted without looking next at the

outer field. Suppose that 0 starts off with an algebraic gauge function 0 co 00 with c > 0

(on physical grounds). Then the leading term of ca 0 (cR) must be 0(l ) as c - o in order to

match 4o The only possibility is that ot is an integer and that the first term permitted in

(8.4) for 0 contains c derivatives. But then that term would contain a factor R-0, whereas

the leading term in the expansion of $o(r/c) contains only rO or Qnr where 3 > 0. Matching

to leading order is therefore impossible if 0 starts off with an algebraic gauge function. A

little trial and error, based on the fact that a monopole a(°)H0o)(r is certain to be present in

0., suggests that instead we should try

0 + "'(8.6)

Then only the monopole can be present in 0o , for the presence of a dipole, a, a/ax HOW,{r)

would make (l/Qne) #0 (eR) infinite like (e Rne) "t , rather than 0(0) which it needs to be.

Thus

0. = a( ° ) Hi"(rO (8.7)

and with an obvious extension of our previous notation,
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0

a(°) 2i
Rne to leading order.

Qne Vr

Hoping that we can extend the matching principle to cover this sort of case we write

ir

and try matching this to the terms up to 0(1/ne) in

00

t()(r)=-I+A(o5(Qnr-£neS+Z A(° )  Cos 0.
l'=l

This will only be possible if all the A( ° ) 0 and then

)(0, Qne
which gives us

a(O) = + (8.9)
2

This determines the leading order solutions as

V1 WOW 0 (8.10)4,-,-I # Qne 20

To improve upon these approximations we have to expand (1 /Qne) o (eR) up beyond the

0(1) term, for expansion of (o - I is not helpful. This gives

Qn +
1
' -R

S (eR)=-I- -L nR +, -n 2 - +O/-0\n2

and suggests

-! +j "'" (8.11)

01 is an inner eigensolution, and some thought shows that the algebraic type of eigensolution

cannot yet enter into the solutions. (Note that our previous arguments as to how each
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expansion determines the form of the other have to some extent broken down with purely

logarithmic gauge functions; for example, the outer expansion of (bo = - I is - 1, but this

does not mean here that the outer series start with an 0(1) term). We try

4,= A(I 'nR (8.12)

and then we have

n-e) +-L A(') QnR,
Qne 0

, = I -A + Qnr

- 0 Qnr (8.13)

On the other hand,

I n (Qn R + -Qn ( f ri 2

Qne ne E - n 2 - V- (8.14)

Clearly, (8.13) and (8.14) do not match, though the choice A( ) = - I does at least

match the term in (On r)/(Qne). We can either be satisfied with the matching that does work,

and which determines A"' ) uniquely, and merely ignore the failure of other terms to match,

or we can think about trying to modify the expansions a little in order that matching of all

terms can take place satisfactorily.

This difficulty often arises in the case of purely logarithmic gauge functions. Fraenkel

1131 has discussed it at some length, showing how the matching failure can be traced to at

best "marginal overlap" of the inner and outer expansions when inverse powers of Qne are

used as gauge functions. He also shows how, in principle, the terms which cannot be expected

to match, can be traced at each stage. It should, therefore, be possible to persist with our

expansions in inverse powers of Rne, and to correctly determine all terms, regardless of the

matching failure, by careful attention to the points made by Fraenkel. But the result would

be useless for practical purposes, for the coefficients would all be of order one and an e of

10-10 would still only make consecutive terms smaller by a factor of 10 or so.

We recommend the unrelenting insistence on the matching rule, combined with a slight

change to the gauge functions, as a systematic and effective way of redeeming the situation

on all counts. As a first step, we try taking (One + K)-1 as the basic gauge function, in place

of (Rne)', K being a constant. Assume
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O~ne + K) ~ .

(8.15)

(RnE +K) $

and as before, appropriate choices for the eigenfunctions are

5(0) H(8.16)
0

Now,

-(Qne+K) (eR) ~ I( + LI (Qn R +Qne +K+'YE - Qn 2-K) +
(kne +K) W

so that

k(4+ K' Qne+K Qn K)22 (8.17)
;- + I+(n r +'YE-n ](9.ne +K

while

4 ,TnE + K RnE+K, + -A'' K 0- (8.18)
0 (Vne +K)

Equations (8.1I7) and (8.1 8) can now be matched, and give

5(0) 7r+

(8.19)

0

as hietore. while the remaining terms can be matched if we choose

K =fE- Qn 2 - 11(8.20)

Now we haIvC the SOIlutionS

(Rne +K) -

(8.21)
4) 1 Qn R

(Vne + K)'
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and to take the expansions further we expand o(eR) beyond (Rne + K)"l. We find

I nR (+0 e2
One +0 RnE+K'

which indicates an inner expansion

Rn R e2

4' 1 (Qne + K) (ne + K) 2 3 + ''  (8.22)

This shows the value of enforcing the matching rules in terms of slightly strained gauge

functions. Instead of having the slow series in inverse powers of Qne, we have effectively now

summed that series, or at any rate a subset of that series, into the term (Qne + K), and the

next term, O(e2 ), is now very much smaller than I/(Qne) 2 , as it would otherwise have been.

Note, of course, that now we are out of the infinite sequence of purely logarithmic functions

we must expect to have to treat

E2

(Qne + K) 2 nd

together as effectively a single 0( 2 ) term in the matching.

Failure of matching at higher orders in this and similar problems indicates that a further

straining of the gauge functions is necessary; the overlap has become marginal, or perhaps has

disappeared altogether, at higher order in terms of powers of e and inverse powers of

(Qne + K). The remedy may be to try

Qne + K -* Qne + K + K If

or more generally Qne + K - Rne + K + K!(,) where Kt (e) - 0 as e - o and is to be

determined by the enforcement of all matchings.

9. COMPOSITE EXPANSIONS

Occasionally it is useful to be able to combine the inner and outer expansions into a

single smooth approximation, valid everywhere from the scattering body to infinity in the

scattering type of problem, for example. (More often, however, one needs just to know the

directivity pattern of the field at infinity, or the pressure on the scatterer, and these can be

obtained directly from the outer expansion alone, or the inner expansion alone, respectively.)

There are two common ways of combining the inner and outer series-the methods of

ADDITIVE and MULTIPLICATIVE COMPOSITION. In the additive method it is customary
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to add 0(m)(r) say to ,(n)(R) and take off the part 0 (m, n) (or (n, m), they are identical)

which expansions O(m) and 4 (n) have in common so that it is not counted twice. This gives

a composite

AC = O (n) - (m, n)
Omn - ( + - (9.1)

which is often claimed to be as good as the inner or outer series in their respective domains,
and so, if the expansions overlap, to provide a single smooth function equivalent in accuracy

to the two separate expansions. In the method of multiplicative composition one defines

MC 0(m). 4,(n)
Omn ( n9.2)0(mi, n)

which again is claimed to provide a different, though asymptotically equivalent, single smooth

function, good through 0(em) in the outer region and through 0(en) in the inner.

As Van Dyke points out in the Notes to the revised edition of his book, these two

composites are particular instances of a very general class of composites. Let F be a general
functional, F-1 its inverse. Then a general composite formed from the outer expansion O(m)

through 0(em) and the inner expansion ((n) through 0(en) is defined by
F = F-' - F(Oim)) + F(.t(n)) F(,(m,n)) t (9.3)

The functional F(0) - 0 gives the additive composition, the functional F(0) - Rn 0 gives the

multiplicative rule. Other functionals F give different composites, as when F(O) = exp 0 for

example, which gives

Omn = Rn I exp O(m) + exp )(n) - exp 0(m, n) (9.4)

Now in general none of these composites has the accuracy claimed for it. This follows

from the fact that in general neither 0 (m, n) nor 0(n, m) has any asymptotic significance with

respect to 0 or 4, as stated already on pages 11 and 12 in connection with the Asymptotic
Matching Principle. The only thing that can be said about the additive or multiplicative

composites is that if, for example, Onin (r, R = r/e, e) is expanded for fixed r and e - o, and

if that expansion is truncated beyond (m) the result will be precisely 0(m), the outer

expansion through 0 (em). Likewise if AC (r = eR, R, e) is expanded through 0 (en) for

fixed R, the result will be the inner expansion 4(n) through 0(en) -and the same is true of

the multiplicative composite. The same is not true, however, for any functional F other than

the additive one (F 1) or the multiplicative one (F Rn) because of the presence of extra
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terms which will be thrown up when one has to expand not simply $(n)(r/e), for example,

but FW((r/e)).

Therefore a composite is at best only as good as 0 (m) or O(n) when it has been expanded

and truncated, and otherwise may not have the accuracy of 0(m) in the outer region or of
((n) in the inner region, while its accuracy or otherwise in between-say for r = O(EI/ 2 )-is in

general quite unknown. This last point is emphatically made by Schneider [14) who gives an

example in which the multiplicative composite is hopeless in the intermediate range of r

because of a zero in the denominator, 0( , , n). Van Dyke [1, Notes to revised edition I gives

examples in which different functionals F can be used to produce widely differing accuracies

of the composites formed according to (9.3).

My feeling at the moment then is that there is no known rule which invariably produces

a composite as good as the inner or outer expansions taken separately, let alone in between,

and therefore that composites are to be avoided wherever possible. In simple cases, and often

to leading order only, it may be possible to form a composite by careful inspection of the

behaviour of the inner and outer expansions in their own domains and in the overlap domain.

If that can be done, the additive rule should be used, as the most fundamental, though the

multiplicative rule usually gives much neater results.

Just to show how these composites are formed, according to the usual, though generally

incorrect prescription, we go back to the field scattered by a compact rigid sphere, for which

, E3 3 I eir a eir 03)

(9.5)

e cos 0 *(I)
2R 2

to leading order. We have

03,1) = (,3) = e i cos0 = 4()
2R 2

so that additive and multiplicative composition both produce the same composite which is

actually 0(3) itself. In other words

I eir i 8 eir }

3r 2ax r

is a uniformly valid description of the whole field, to leading order. However, the accuracy of

this leading order approximation is not uniform, as is only to be expected in a singular
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perturbation problem. In the outer field the next term is 0(e 5 ) while 00) is 0(e 3 ), whereas

in the inner field 0(3) is 0(e) and the next term is 0(C2)

To improve accuracy in the near field we can try using

10~31 1 eir _ i a e it = 0(3)

~t3 r 2 ax r

with

i 21 2 P2 (cos 0 ) 1 } ,(2)"e- Cos 0- e2  + =

2R 2  9 R 3  3R i

and

0(3, 2) = ,(2, 3) = _ 2 + e - cos 0.

3R 2R 2

Then the additive (3, 2) composite is

e3. 1 eir 2 r 22 P2(cos0) }

3 r 2 ax r 9 R 3

and for once this is neater than the multiplicative composite. No significance is to be

attached to the last term here in the wave zone r = 0(1), for there it is 0(e) and the outer

expansion itself is only good to 0(e 3 ) so far. The inclusion of the last term when r = 0(1)

may make a distinct difference to the value of 0 for moderately small values of e, and may

apparently improve upon the asymptotic representation 0( 3) . In general, however, such an

improvement is coincidental, and the 032 composite has no asymptotic correctness until it is

expanded for fixed r and terms smaller than 0(e) thrown away, which of course takes us

back to the outer expansion 0(3) alone.

10. CONCLUSIONS

These notes have attempted to show MAE at work on some simple, but hopefully

representative, problems of classical linear acoustics. Despite their apparent physical and

mathematical simplicity, these low frequency sound generation and scattering problems

illustrate very effectively a number of subleties which have often gone unnoticed in more

complicated, but perhaps less delicate, problems of fluid dynamics. They show how careful

application of the method leads in a reasonably straightforward way to solutions in the near

and far fields whose accuracy is limited only by the length of the algebraic manipulations that

have to be carried out at high order.
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Modern acoustics, and expecially underwater acoustics, deals with many problems

involving one or more small parameters. For example, the fluid is generally only weakly

compressible, so that often the Helmholtz numbers k0 L may be small; a vibrating surface

coupled to an acoustic fluid may be subject to high or low fluid loading; the acoustic fluid

may be in bulk motion at a low Mach number; the phase speed of an elastic surface wave

may be only slightly less than the sonic speed, or the frequency may be very much less than the

coincidence frequency, etc., etc. All such problems can be regarded as governed by two distinct

length scales, typically an acoustic length scale and the other scale determined by hydro-

dynamic or elastic effects regardless of compressibility. As such, we must expect them to be

singular perturbation problems, and must look to MAE as a likely method of attack. A

variety of problems in both linear and non-linear acoustics is discussed from this viewpoint

in the article 191, while still more recent and unpublished work will deal with MAE in

problems involving coupled wave-bearing media.
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